Multipurpose Black-Phosphorus/hBN Heterostructures.

نویسندگان

  • Gabriel C Constantinescu
  • Nicholas D M Hine
چکیده

Black phosphorus (BP) has recently emerged as a promising semiconducting two-dimensional material. However, its viability is threatened by its instability in ambient conditions and by the significant decrease of its band gap in multilayers. We show that one could solve all the aforementioned problems by interfacing BP with hexagonal boron nitride (hBN). To this end, we simulate large, rotated hBN/BP interfaces using linear-scaling density functional theory. We predict that hBN-encapsulation preserves the main electronic properties of the BP monolayer, while hBN spacers can be used to counteract the band gap reduction in stacked BP. Finally, we propose a model for a tunneling field effect transistor (TFET) based on hBN-spaced BP bilayers. Such BP TFETs would sustain both low-power and fast-switching operations, including negative differential resistance behavior with peak-to-valley ratios of the same order of magnitude as those encountered in transition metal dichalcogenide TFETs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-Dimensional Material Nanophotonics

The emerging two-dimensional (2D) materials exhibit a wide range of electronic properties, ranging from insulating hexagonal boron nitride (hBN), semiconducting transition metal dichalcogenides (TMDCs) such as molybdenum disulfide (MoS2) and tungsten diselenide (WSe2), to semi-metallic graphene. The plethora of 2D materials together with their heterostructures, which are free of the traditional...

متن کامل

Probing 2D black phosphorus by quantum capacitance measurements.

Two-dimensional materials and their heterostructures have emerged as a new class of materials, not only for fundamental physics but also for electronic and optoelectronic applications. Black phosphorus (BP) is a relatively new addition to this class of materials. Its strong in-plane anisotropy makes BP a unique material for making conceptually new types of electronic devices. However, the globa...

متن کامل

Hexagonal Boron Nitride assisted transfer and encapsulation of large area CVD graphene

We report a CVD hexagonal boron nitride (hBN-) assisted transfer method that enables a polymer-impurity free transfer process and subsequent top encapsulation of large-area CVD-grown graphene. We demonstrate that the CVD hBN layer that is utilized in this transfer technique acts as a buffer layer between the graphene film and supporting polymer layer. We show that the resulting graphene layers ...

متن کامل

Bandgap renormalization and work function tuning in MoSe2/hBN/Ru(0001) heterostructures

The van der Waals interaction in vertical heterostructures made of two-dimensional (2D) materials relaxes the requirement of lattice matching, therefore enabling great design flexibility to tailor novel 2D electronic systems. Here we report the successful growth of MoSe2 on single-layer hexagonal boron nitride (hBN) on the Ru(0001) substrate using molecular beam epitaxy. Using scanning tunnelli...

متن کامل

Graphene based heterostructures

insulating substrates such as SiO2 are highly disordered, exhibiting characteristics that are far inferior to the expected intrinsic properties of graphene. We have developed a novel technique for substrate engineering of graphene devices using layered dielectric materials to build graphene based vertical heterostructures. We employ hBN, an insulating isomorph of graphite, as a substrate and ga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 16 4  شماره 

صفحات  -

تاریخ انتشار 2016